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ABSTRACT

/ The estimation of arrival direction is an important task in signal

processing and has recently received considerable attention in the literature.

In this paper, the authors proposed a method to estimate the direction of

arrival and proved the strong consistency of the estimates for both cases in

Sff

presence of white noise and colored noise. . ,..
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1. INTRODUCTION

Since the work of Schmidt (1981) and that of Bienvenu (1979), which

in turn were extensions of Pisarenko (1973), the eigenstructure methods

for direction of arrival (DOA) have been developed rapidly in the past few

years, and have attracted considerable interest. When the additive sensor

noise is spatially white, Wax, Shan and Kailath (1984) proposed a method

for estimating the DOA. This method is based on the fact that the DOA

vectors are orthogonal to those eigenvectors of the true covariance matrix

of observations associated with the smallest eigenvalue. In some cases,

the noise is not spatially white and its covariance is unknown and in this

case the algorithm of Wax, Shan and Kailath is no longer appliable. In these

cases, Paulraj and Kailath (1986) proposed a method to estimate the DOA based

on the difference of two covariance matrices. Their method relies on the fact

that the DOA vectors are orthogonal to the eigenvectors of the difference

matrix associated with the zero eigenvalue. Both methods of Shan-Wax-Kailath

and Paulraj-Kailath are based upon finding the infimum of a Hermitian form

with constrained variables.

However, though simulation results strongly supported the above two methods

for estimating the DOA, it is not an easy task to find the solutions for the

infimum of the constrained Hermitian form. In the present paper, we investigate

the estimation of DOA for both cases where the noise is white or colored. In the

argorithm for estimating the DOA, we only need to solve a polynomial equation

whose degree is just the number of signals. Also, we shall prove that this

estimate is strongly consistent under minor moment restrictions. In another

paper (in preparation) we shall investigate the asymptotic normality of these
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estimates.

The organization of this paper is as follows: In Section 2, we shall

describe the algorithm for estimating DOA when the noise is spatially white

and prove the strong consistency of these estimates. In Section 3, we shall

briefly describe the procedure for finding the estimate of number of signals

by using information theoretical criteria and the estimate of DOA by the

proposed method when the noise is colored. We only point out that these

estimates are also strongly consistent and omit the details, because the

proofs are almost the same as the proof for the strong consistency of signal

number estimate (see Zhao, Krishnaiah and Bai (1986 a,b) and the proof given

in Section 2 for the strong consistency of estimtes of DOA.
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2. ESTIMATE OF DOA IN THE PRESENCE OF SPATIALLY WHITE NOISE

Consider the model

x(t) - As(t) + n(t), t = 1,2,...,N, (2.1)

where x(t): pxl, the observations received by p sensors, s(t):qxl, the signal

vector emitted by q sources, q < p, n(t) is the white noise vector, A (ai'... a q)

and ak (,e .,e j0(Pl), k)T , called the direction-frequency vector

thassociated with the k signal j = wL 0 the center frequency of signals and

tk = c n 8k' A the spacing between sensors, c the speed of propagation and

8k the direction of k
th signal. Since w0 is known, we can assume w0 in the sequel.

It is usual to assume that

(i) {s(t)} are independent and identically distributed (i.i.d.), {n(t) }

are i.i.d., and independent of {s(t)}

(ii) Es(t) = O,En(t) 0, Es(t)s*(t) = T > 0, (2.2)

En(t)n*(t) = a2I with a2 unknown,- - p

(III) Tk's are distinct,

where * denotes complex conjugate transpose.

Under the model (2.1), our problem is to find an estimate of Tk's based

on the sample covariance matrix

N

E I x(i)x*(i).N i- -

The covariance matrix of x(t) is given by

E - ATA* + a2I
p
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Denote by 1 >A 2 >"' > k and6 >6 >..' >6 the eigenvalues of Z andE1 X > p 1- 2- _ p

respectively. Also, let e...,ep and ul'..,up denote the eigenvectors

associated witir these X's and 6's respectively. Without loss of generality, we

assume that u's are of unit length and orthogonal of each other, and the same

is true for e's. If the number of sources is q, then we have

X 1  -X2  -Aq > q+l " = p 2

The key steps of Wa- Shan - Kailath algorithm are as follows. First,

determine the number of sources q. Next, find the so-called noise subspace as

the span of the eigenvectors corresponding to the minimal (noise) eigenvalues

a of E. The subspace spanned by the direction vectors of the impinging signal

wavefronts, which is called signal subspace, can be obtained as the orthogonal

complement of the noise subspace. For determining the DOA's, they plotted the

inverse Hermitian form that measures the orthogonality between the direction

vectors and the noise subspace, i.e.,

H E) = [a(E)E( )*a -1 (2.3)= L-8V. n -0

where a8 =(Je-J8 -j(p-l))T and n is an px(p-q) matrix whose columns

are the eigenvectors associated with the minimum eigenvalues of S. They pointed

out that, "Ideally, a sLE n, for 8 = 8k, and hence H E  should become very large

at these 8k' enabling us to pick out the source directions." In other words,
they might extract these 86's by seeking for the extreme points of H - , a

k

polynomial of e- 8 with degree 2(p-1).

But there are two problems: (1) We do not know the number of the extreme points.

(2) No method is proposed to extract the desired q 0k 's from these extreme points.
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Now we introduce a new method as follows:

Since the information theoretic criterion (ITC) gives strongly consistent

estimate of the number of signals, we can assume that q is known throughout

this section. (refer to Zhao, Krishnaiah and Bai (1986a]).

Write

WN =(u q+l,...,Pu). (2.4)

By a knowledge of linear algebra, there exists an unitary matrix 0 N:(p-q)x(p-q),

such that

WnN q+l,..-p) ( (Uik) 1<ip, q+l<k!P

with ik = 0, for k = q+l,...,p-i and i = k+l,...,p, (2.5)

u.. > 0, for i = q+l,...,p.

Also, if all u.i > 0, then 0N is uniquely determined.

Let zk = k exp(jik), k = 1,2,...,q be roots of

q+l k-i
B(z) = u Uk,q+iZ (2.6)

k=l

where k > 0 and ke[0,2fT). Then we take k' k = 1,2,...,q as the estimates

of Tk'S.

' Remark 2.1. Sometimes, Uq+lq+1 may be zero. In such a case, there may

be less than q roots for B(z), and we can not get q estimates of Tk 's. However,

in the large sample case, we can prove that with probability cne, uq+l,q+l > 0

for large N.

Remark 2.2. Using the Schmidt orthogonalization procedure, we can seek

for ON and ( ik)

N it
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Remark 2.3. Using our method, we do not bother about answering the two

problems mentioned above.

In the sequel, we will establish the strong consistency of ; kIs. Before

doing that, we introduce the following lemma.

Lemma 2.1. Let A (a ik ) and B = (b Q are two Hermitian pxp matrices with

spectrum decompositions

p *
A 6 u 

6
i u1i 6~ 1 62 > >. -6,P

and

p*
B X v i A1 X A X2  X ..

where 6Vs and A's are eigenvalues of A and B respectively, u's and v's are

* orthogonal unit eigenvectors associated with 6's and A's respectively. Further,

* we assume that

A A- +1 nh Ah, n = 0 <r < . -ns pp h ,2,...,s,

A >A2 >..> s

and that

ja ik-b ik < a, i, k 1,...,'p.

Then there is a constant M independent of a, such that

(i) 16 i-AXI < Ma, i -1,2,...,'p

(i) h * n h * (h) wt

i- h1 +1i-n h1+1ii

h-i h-i2%

U~~~-.li * t* -- e,- ,
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c (h) = (C (h) C. (hj1) I _ Max, Z., k = 1, 2,.. ,p, h = 1, 2,. .s.

Proof. By Von-Neumann's inequality, one can easily obtain

p 2 < tr(A-B)2

which implies (G) with M = p.

For simplicity, we denote by D = (a) the fact that Idk Ma, i=1,2,...,m,

*k = 1,2,... ,n for any mxn matrix D =(d ). To prove (ii), without loss of

% generality, we can assume

h ii h Iyli

wher Lh= ~~1~1 * . hl%} When s = 1, (ii) is trivial. Now we assume (ii)

is true for s =t-1, and proceed to prove (ii) for s =t. When s =t

t-1 -- * t-1 -

01 (h-At) u~u = hjA-X t v V. + 0(a). (2.7)
h1 l6 Lh h=l i6 Lh_

Multiply from right hand by vk k6:L in the two hand sides of (2.7), we get
k* t

t-1-

j (\ - A9 t)I (ik = 0(a)
h=l ie-Lh

which implies that

Thus, we have

U IV 2 0 (a), V 1U 2= 0(a), (2.8)
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where

1-~i'n' U 2  -n -+'* -n t

v1 (v ,V)nt, V2  (v Yn~ t l t . Vvn

Put U 2  V 1~ + V2 G 2 where G I nti x(p-n t-i), G 2: (p-n ti)x(p-n ti) By (2.8),

vU V = V (I-u u)v = V + 0(ca 2
2 2 22 v2 pll 2 =2 2

I p- + 0() (2.9)

p-t-i

By (2.8) and (2.9), we get

0c)1U2  G1  V 1V2 2 G

which implies that

U 2 V2 G 2+ OWcL. (2.10)

By (2.9) and (2.10),

= I pntl+ 0((X) (2.11)

From (2.10) and (2.11), it follows that

i- uu 2u - v2 2 + O(a) vV+ 0(W, (2.12)
i6Lj~ 2 t iSLjii

and that

L . U~ .. ~:~ * . 9 ~ g.
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t-2* -

I Xh 1 ui~i + "t-I u u
h-i iSLh- i6L tl+L t

t-2*
I- V.V v +~ X v O+(Mz)

h-i h Gh-i11-i 1il t1+ tlj-* iyi+

By the induction assumption,

u iu. -M v iv.i + (a), h -1,...,t-2, (2.13)
i6Lh. i6Lh-

and

- v iV. + 0(a). (2.14)

* Thus, (ii) is true for s - t by (2.12) - (2.14). Lemma 2.1 is proved.

We have the following:

THEOREM 2.1 Suppose the 4 th moments of s(t) and n(t) are finite. Then

the estimates i 's are strongly consistent.

Proof. Let b-= (b1,b 2 9 ... ,b q 1 p0,.. . 0) Tbe the pxl vector whose elements

b1,b 2 9' . ..,b qlare the coefficients of the polynomial bq~ N (z-ei~)~fz
q+1

with restrictions k~ 2 bk - 1 and b ql> 0.

TLet n q+i 9q- -Obl 2* ..... P -~*0..,) (0,...,O~1 0, .

b Tbe all pxi vectors. From a* - eJE1'k~jk = 0, k = 1,2, ... qq+i ak~q+t

t. - 1,... ,p-q, it follows that n q1,... ,ql are all eigenvectors of AIA associated

with zero eigenvalue. Since they are linearly independent, they span the eigen-

subspace of A'YA associated with zero eigenvalue. Let V2 denote this subspace
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and let P(a (N nt hepoeto of u +1on v .By the2 q+1) kkq+ dent the prjcto

strong law of large numbers, we have

A * 2
~ ~E=A'A + a I, a.s. as N -

by Lemma 2.1, it is easy to see that

uq~ =P (a ) +o(1) a. s. as N- (2.14)

Since u q+1,1 = 0 for Z q+2,. ..,p, we see that the last p-q-1 components

of P (ai ) = f (N tend to zero almost surely. From this and the2 .q+l 1 ~ lk2

*expressions of q k' k - q+1,...,p, noting that b qlare. positive constants,

we get

lim 0 N) = 0 a.s. for. k = q+2,...,

* and

lim 0 (N) = 1 a.s.,
N- q+ 1

which implies that

~q+l -0 lq+l -=b a.s. as N -~c*(2.15)

By the definition of b, we know that ejtkt k = 1,2, ... ,q, are the roots

of the polynomial equation

1 b k zk1 = 0. (2.16)
k-i

Hence, after suitable rearrangement,
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J k JTk
Pke - e , a.s., k = 1,2,...,q.

and consequently,

1k a.s.-

tk T k' k = 1,2,... ,q, a.s. as N - (2.17)

which proves the theorem.

Remark 2.4. If q is known, to ensure the strong consistency of k'S,

we only need te assume the second moments of s(t)'s and n(t)'s. But in ITC

procedure, to guarantee the strong consistency of the estimate of the signal

number, we assumed the 4t h moments of s(t) and n(t) exist. (Refer to Zhao,

Krishnaiah and Bai [1986a]). Therefore in this theorem we still assume the

4th moments exist, so that the conclusion of Theorem 2.1 is still true by

using the ITC estimate of signal number 4 instead of q when q is unknown.
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3. ESTIMATE OF DOA IN THE PRESENCE OF COLORED NOISE

In the section 2, we obtain an estimate of DOA's when the additive sensor

noise is spatially white. When the sensor noise is colored, the case is more

complicated. For this case, Paulraj and Kailath (1986) proposed a

solution to the DOA estimation problem. Their technique is applicable to

situations where it is possible to obtain two estimates of the array covariance

in which the unknown noise field remains invariant while the signal field under-

goes some change. This method is based on computing the difference of the two

measured covariances, thus subtracting out the unknown noise covariance and

leaving only the difference matrix of the two signal covariance.

Assume that there are two estimates of the array covariance with the

array being displaced between the measurements. This displacement could be

of several types. Examples of spatial displacements are rotations, translations,

or a combination of the two. Displacements can also be of a temporal nature

with the noise statistics being long-term stationary, while those of the signals

are only short-term stationary. For the details, refer to Paulraj and Kailath

(1986). Here we assume that the noise covariance matrix is invariant across

the tw' measurements while the signal covariance matrix and the DOA.'s change in

some manner between the measurements. Thus we have the following model:

x( )(t) = A(W s (0(t) + n ()(t), t = 1,2,...,N, j = 1,2 (3.1)

where x(0 (t): pxl, the observations received by p sensors for the Zth measurements,

s (0(t):q1 xl, the signal vector emitted by q, sources, Z = 1,2, n(e)(t) is the

colored noise for the Zth measurements, A ,...,a ) and ''z)*.

( Z)e- j0k
£ )  - i ( p - )r ( ) T1_

(1,e ,...,e k)Tk k - 1,2,...,q1 and Z - 1,2.
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It is usual to assume that

(i) For each E, Z = 1,2, {s(9.)(t)} iid., {n(W)(t)} iid., and independent

of [s

(ii) Es(£)(t) -0, En()(t), = 0,

(s(9)(t)s(:)*(t) = /( > 0, (3.2)

En(2.)(t)n, ) W - . > 0, Z = 1,2, t 1,2,...,N

where T(M), T (2) and Z. are all unknown.

The covariance matrix of x()(t) is given by

= A(.)i(2.)A(Z)* + Z0, Z = 1,2.

() (2)For the translational invariance model, we know that A( ) . A , and

(1) (2) = A(1)(T(1)_ (2))A(1)* (3.3)

where we assume that T1) -(2) is of rank q and %< p. Also, we assume

that TM's are distinguished. This means that A(M) is of full rank (i.e., - q).

For other invariance models, we have

z() - E(2) . (A(1),A(2)) 0  _ (2 (A (  2), (3.4)

wece we assume that T (),s and T (2),s are all distinguished and 2q < p. In

k kp.I

this case, (A(1),A(2)) is full rank (i.e., = 2q,).

For the model (3.3), we write A , - A (1 - 1(2 and q = ql.

For the model (3.4), we write A = (A(',A(2)), T = ( C2). and q = 2q1 .

Put

= I x(t)(i)x( )*(i), 2 - 1,2.i-1
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LetA 2 _k_ 1 A fiX. 2A X >AA 0 and 6 >> ... >6 denote
Let > ... > 1 2-l- p

the eigenvalues of (z1-E2 )2 and (i1- 2 )2 respectively. Take C N satisfying

CN CN
-- 0 and N *® as N- (3.5)
N loglogN

Write

p
I(k,C N) N 1 6.1 + k C N" (3.6)

i-k+1

and define q as follows

I( ,CN) min{I(0,CN), ...,I(p-1CN)}. (3.7)

We have the following

THEOREM 3.1. Suppose that (3.2) holds, A is of rank q and the 4th moments

of n ()(t) exist for Z. - 1,2. Then 4 is a strongly consistent estimate of q.

Proof. By the law of the iterated logarithm, for E - 1,2,

E + O(/loglogN) a.s. as N * , (3.8)

Using Lemma 2.1, we have

iim 6i X i a.s., i - 1,2,...,p. (3.9)

N-

Since the matrix El- E is of rank q, there exists a px(p-q) matrix QTQ
1 2 0O 0 -

and Q(E - 0. It is well known that

6 -min trQT Ai 2 (3.10)i iq+l Q T QSIp

p-q

By (3.8),
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QO( E- E 0 (El 2 _(E1 _2)) O(/IoglogN), a.s. (3.11)

By (3.10) and (3.11),

p
0 i < +6 < tr Q TZ 1 -F )2Q0 = 0(41oglogN), a.s. (3.12)
imq+l 0N

Using (3.9) and (3.12), noticing that A > 0, we can easily prove that, withq

probability one for N large,

lI(q,C N) < I(k,CN) k 0 q, k < p-1,

which implies that

q-q.

Theorem 3.1 is proved.

In the sequel, we assume that q is known. Write T = 4 A'i, then (El-E2)2

can be rewritten as

S(z l - 2 - ATA*.

Note that A is of the form A = (a 1I' ) with

-Jk (le k -J(Pl)T k T
a k, le ...,e ) , k , lo,...,jq,

where Tk 's are distinguished. So the problem of estimating the DOA's reduces

the case of section 2. Let ui'"'$p denote the eigenvectors of (ZI1-z2)

associated with 6,. ..,6p. Based on WN - (uq+l, ... ,U), we can use the method

proposed by us in the section 2, and take ik' k - 1,2,...,q, as the estimates of

T k'is. In the same way, we have
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THEOREM 3.2. Under the conditions of Theorem 3.1, k 's are strongly

consistent estimates of Tk 'S.

Remark 2.4 also applies to this case.
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